Reference Sphere for Wavefront

Reference Sphere

• 기준 구면을 이해하기 위해 다음 샘플을 활용합니다

✓ 경로 : ...\#Sequential\#Objectives\#Double Gauss 28 degree field.zmx

• 다음 과정을 통하여, 파일을 수정합니다

- ✓ #12 이미지 표면에서 Insert 버튼을 두 번 눌러, #14 위에 두 개의 행을 추가합니다
 - ▶ 이제 이미지 표면은 #14가 됩니다
- ✓ #12의 두께의 Solve Box를 선택하여, Solve 목록을 확인합니다
 - ▶ Pupil Position을 선택하면 동공 위치를 자동으로 추적할 수 있습니다
 - ✤ Solve Box에 U가 표시되어야 합니다
 - ▶ 이렇게 하면 동공 위치에 #13 표면이 자동 배치됩니다
- ✓ #13의 반경과 두께에 각각 Solve Box를 선택하여, Solve를 적용합니다
 - ▶ Pickup을 선택하여, 기준 구면에 대한 정보를 자동 구현 합니다
 - ✤ Solve Box에 P가 표시되어야 합니다
 - ▶ #13의 반경과 두께는 #12의 두께에 Scale Factor = -1를 적용하여, 구현합니다

	E L	ens [Data					-	□ ×	
	Update: Editors Only - $\bigcirc \bigcirc \bigcirc + \bigcirc \blacksquare \rightarrow + 2 \bigcirc \bigcirc \bigcirc - $									
	✓ Surface 13 Properties < > Configuration 1/1 < >									
		Surface Type Comme		nt	nt Radius		Thickness			
	10		Standard 🔻			196.417	V	6.858	^	
	11		Standard 🔻			-67.148	V	57.315	V	
	12		Standard 🔻			Infinity		-108.060	U	
	13		Standard 🔻			108.060	Ρ	108.060	Р	
	14	IMA	AGE Standard ▼ <			hinnity			>	
Curvat	urvature solve on surface 13					Thickness solve on surface 13				
Solve	Solve Type:		Pickup ~		So	Solve Type: P		ckup ~		
From	From Surface:		12		Fre	From Surface: 12				
Scale	Scale Factor:		-1		Sc	Scale Factor: -1				
From	rom Column:		Thickness ~		Of	Offset: 0				
					Fre	om Column:	Thickness ~			

tsne /\nsys

• Solve가 적용된 #13 표면은 동공의 기준 구면을 표현합니다

✔ 파면의 기준 구면을 시각적으로 구현하여, 이해하기 위한 목적으로 파일이 작성되었습니다

✔ OpticStudio는 파면 오차를 계산할 때 시스템 내부에서 이러한 작업들이 수행됩니다

🕞 1: Layout			- □ ×
🐼 Settings 🍃 📬	🗟 🖶 🖊 🗆 🖊 🗕 🖊	4 H 🗇 🤜 😫 🔛 🖷	🕑 Line Thickness 🗸 🔞
First Surface:	1 ~	Wavelength:	2 ~
Last Surface:	14 ~	Field:	1 ~
Number Of Rays:	2 🗘	Color Rays By:	Field #
Scale Bar:	Off ~	Upper Pupil:	1
Y Stretch:	1	Lower Pupil:	-1
Suppress Frame	\checkmark	Delete Vignetted	
Fletch Rays		Marginal And Chief Only	
A			

